	Question		Expected Answers		Additional Guidance
1	(a)	(i) (ii)	node occurs where the amplitude/displacement is (always) zero antinode occurs where the amplitude (of the standing wave) takes the maximum (possible) value	B1 B1	accept displacement for amplitude for (i) only
	(b)	(i)	wave travels to end and is reflected reflected wave <u>interferes/superposes</u> with incident wave	B1 B1	accept 2 waves of same f travelling in opposite directions <u>interfere</u> with no reference to reflection
		(11)	always destructively at certain points to produce nodes or always constructively at certain points to produce antinodes	B1	
		(ii) (iii)	A and N points labelled correctly 3	B1 B1	
		(iv)	$30 \text{ cm} = \lambda/2 \text{ or } \lambda = 60 \text{ cm}$ v = f \lambda = 120 x 0.6 v = 72 (m s ⁻¹)	C1 C1 A1	allow 1 mark for correct calculation using $v = f \lambda$ with wrong wavelength if method/reasoning clear
	(c)		 v = 2k becomes v = 3k (k = 36) wavelength increases by 3/2 (as frequency unchanged) 2 half wavelengths fit on the string so standing wave is set up/AW 	B1 B1 B1	accept v increases by $3/2$ or v = 108 m s ⁻¹ accept wavelength becomes 90 cm allow ecf correct conclusion with wrong λ
			Total question 5	13	

Question		ion	Answer	Marks	Guidance	
2	(a)	(i)	f = 1000/2 f = 500 (Hz)	C1 A1	give 1 mark for ½ (POT error)	
		(ii)	$v = f\lambda$ giving 340 = 500 x λ $\lambda = 0.68$ (m)	C1 A1	ecf(a)(i)	
	(b)		sinusoidal curve of same frequency and amplitude ± cosine curve	B1 B1	must be drawn for <u>2 full cycles</u> to score this mark allow drawn as sine curve from $t = 0.5$ ms	
A A A	(c)		relates to the <u>oscillation</u> of two points on the (same) wave how far 'out of step' one oscillation is from the other/AW $\lambda/4$ means a phase difference of 90° or $\pi/2$ (rad)	B1 B1 B1	accept vibration N.B. statements about oscillations of two waves can only score the third marking point	
	(d)		sine wave of same frequency with increased amplitude realisation that intensity is proportional to $(amplitude)^2$ giving amplitude increase by $\sqrt{2}$, i.e.2.8 mm	B1 B1 B1		
A A A	(e)	(the wave <u>reflected</u> at the end of the pipe <u>interferes/superposes</u> with the incident wave to produce a resultant wave with nodes and antinodes both ends must be antinodes the pipe must be $n\lambda/2$ in length for this to happen	B1 B1 B1 B1	max 3 marks	
		(ii) 1	air molecules <u>oscillate</u> along the axis of the tube with maximum <u>amplitude</u>	B1 B1 B1	max 2 marks; allow vibrate; if transverse wave is clearly implied then can only score third marking point	
		(ii) 2	no motion/nodal point	B1	allow zero displacement/amplitude	
			Total	18		
			SCAN DOWN TO CHECK NO ANSWERS ON PAGE 11			

Q	Question		Answer Marks		Guidance	
3	(a)		when two(or more) waves meet/cross/interact (at a point) the (resultant) <u>displacement</u> is the (vector) sum of the (individual) <u>displacements</u>	B1 B1	do not allow for two waves travelling in opposite directions allow as a special case: the <u>resultant wave</u> is	
	(b)	(i)	constant phase difference/relationship (between the waves)	B1	allow fixed	
		(ii)	$6 \times (2n + 1)/2 \times 10^{-7}$ (m) where n = 0, 1,2, etc.	B1	expect 3 x 10 ⁻⁷ ; next values: 9 x 10 ⁻⁷ , 15 x 10 ⁻⁷ allow 300 nm, etc	
		(iii)	select $\lambda = ax/D$ $6.00 \times 10^{-7} = 1.20 \times 10^{-3} x/2.50$ $x = 1.25 \times 10^{-3} (m)$	C1 C1 A1		
		(iv) 1	fringes move closer together a smaller distance is required between the rays from the slits to produce $\lambda/2 / \pi$ phase change	B1 B1	allow (use of formula) x α λ as (a and D fixed) and λ decreases	
		(iv) 2	fringes same distance apart paths of rays unchanged/slit centres same distance apart	B1 B1	allow (use of formula) x unchanged as a (λ and D) fixed	
		(iv) 3	fringes move closer together the angle at which the dark fringes appear from the slits is the same, but the distance to the screen is much less	B1 B1	allow (use of formula) x α D (as λ and a fixed)	
			Total	13		